
Automatically assessing
quality of class comments

Ludovic Herbelin, Seminar Software Composition, MCS 2020

Supervisor : Pooja Rani

1

Introduction and
motivation

2

Comments overview

3

Comments are one of the main sources of documentation of a project

They should help contribute to the code’s understandability

Documented code has been proven to be easier to understand than
undocumented ones (D. Steidl, 2013)

Problem: Documentation is often given a lower priority

Comment quality

4

What makes a good comment ?

5

What makes a good comment ?

6

Too long !

Trivial ! Okay

Automatically analyzing comment quality

- Comment’s usefulness is related to the code’s understandability

- Need to assess and relate the natural language of the comment and machine
language of the code

7

Our work

8

Goal : analyze quality of source code comments

Focus on related metrics

Applied on Pharo and Python datasets

Quality attributes of a comment

• Coherence : How the code relates to the comment

• Completeness : Are there enough comments, is everything documented ?

• Natural Language Quality

9

Work pipeline

10

Discarded Metrics

• SYNC Heuristics / Documentable Item ratio

• Polysemy Heuristics

• API External Documentation Quality

11

Previous work

1. Automatic Quality Assessment of Source Code Comments: The JavadocMiner
(N.Khamis, 2010)

2. Quality analysis of source code comments (D. Steidl, 2013)

3. Automatically Assessing Code Understandability (S.Scalabrino, 2017)

12

Metric: Comment completeness

13

Number of words in a class comment

Comment should at least contain 3 words to be considered useful
(D. Steidl, 2013)

Metric: Comment completeness

14

Ratio of empty comments

15

Insight

16

Python class comments tend to be shorter than Pharo ones

Python datasets have a higher ratio of empty class comments : 80%
vs 20% for Pharo

Metric: Coherence Coefficient

• Goal : compute how close the class name is to the comment, using edit distance

• Ratio of similar words to total words

• High coherence thresholds empirically defined : 0.5 and 0.75

• Case when Coeff = 0

17

Edit distance

• Number of operations required
to get from a string to another

• Usually costs for delete or insert
is 1, substitute is 2

• Example cost : 2 + 1 + 1 = 4

18

Coherence coefficient results

19

Coherence coefficient examples

20

Insight

21

~80% of the comments are between 0.0 and 0.5

Comments are close to the class name but not too much

Ratios

22

Metric: Readability

• Flesch reading ease [0-120] : lower score means harder to read

• 0-30 : Understood by university graduates

• 60-70 : 13-15 years old

• A score too high could mean the comment is oversimplified !

23

Flesch reading ease

24

Examples

25

Insight

26

Comments are mostly quite easy to read

Could have less, more impactful (technical) comments

Insight

27

Python dataset is sparser in the class comments compared to Pharo

Overall similar distributions

Most comments are close but not too close to the class name

Improvements can be done towards the technicality

Summary and future work

28

Analyzing source code
and comments is a
difficult task

Integrate as a plugin in
IDEs

Write meaningful
comments

Plan the documentation
part in the project tasks

Thank you for your
attention

29

Bibliography

1. N. Khamis, R. Witte, and J. Rilling, “Automatic Quality Assessment of Source Code
Comments: the JavadocMiner”

2. S. Scalabino, G. Bavota, et. Al., “Automatically Assessing Code Understandability:
How Far Are We?”

3. J. Arthur, K. Stevens, “Assessing the Adequacy of Documentation Through
Document Quality Indicators”

4. D. Steidl, B. Hummel, et. Al., “Quality Analysis of Source Code Comments”

5. Y. Shinyama, Y. Arahori, K. Gondow, “Analyzing Code Comments to Boost Program
Comprehension”

30

