Automatically assessing
qguality of class comments

Ludovic Herbelin, Seminar Software Composition, MCS 2020

Supervisor : Pooja Rani

Introduction and
motivation

>

Comments overview

Comments are one of the main sources of documentation of a project

They should help contribute to the code’s understandability

Documented code has been proven to be easier to understand than
undocumented ones (D. Steidl, 2013)

Problem: Documentation is often given a lower priority

Comment quality

I What makes a good comment ?

What makes a good comment ?

// Async edge case #6566 requires saving the timestamp when event listeners are

// attached. However, calling performance.now() has a perf overhead especially

// 1if the page has thousands of event listeners. Instead, we take a timestamp

// every time the scheduler flushes and use that for all event listeners Too long !
// attached during that flush.

// Async edge case fix requires storing an event listener's attach timestamp.

export let currentFlushTimestamp = ©

// 1if we had a previous association

// restore and throw an exception

if(previous != null)
taskVertices.put(id, previous)

// run the thread

new Thread(runnable).start() Trivial | Okay

Automatically analyzing comment quality

Comment’s usefulness is related to the code’s understandability

Need to assess and relate the natural language of the comment and machine
language of the code

Our work

Goal : analyze quality of source code comments

Focus on related metrics

Applied on Pharo and Python datasets

((

Quality attributes of a comment

* Coherence : How the code relates to the comment
 Completeness : Are there enough comments, is everything documented ?

* Natural Language Quality

I Work pipeline

Extract metrics from Select metrics Prepare dataset Implement metrics Interpret results
previous works

10

Discarded Metrics

* SYNC Heuristics / Documentable Item ratio
* Polysemy Heuristics

* API External Documentation Quality

11

Previous work

1. Automatic Quality Assessment of Source Code Comments: The JavadocMiner
(N.Khamis, 2010)

2. Quality analysis of source code comments (D. Steidl, 2013)
3. Automatically Assessing Code Understandability (S.Scalabrino, 2017)

12

Metric: Comment completeness

Number of words in a class comment

Comment should at least contain 3 words to be considered useful
(D. Steidl, 2013)

13

Ratio of comments

Metric: Comment completeness

Comments length (python) Comments length (pharo)
Total : 3455 Total : 6217
100% | m— cumulative 100% ’ =
: W single : mm single
] I
80% i o 8% i
i c |
H o I
| e |
60% E 60% |
(@]
-
40% o 40%
I
(a4
20% 20%
0% I--___ 0% .--___

Number of words in the comment Number of wc-rds in the comment

14

Ratio of empty comments

o o o -
BEN (o)} co o

Ratio of non-empty comments

o
N

0.0

Ratio of empty comments for sub-datasets

mmm Non-Empty
I I | = iy

pharo django ipython mailpile pandas pipenv pytorchrequests

15

Insight

(L0

Python class comments tend to be shorter than Pharo ones

Python datasets have a higher ratio of empty class comments : 80%
vs 20% for Pharo

16

Metric: Coherence Coefficient

Goal : compute how close the class name is to the comment, using edit distance
Ratio of similar words to total words

High coherence thresholds empirically defined : 0.5 and 0.75

Case when Coeff =0

Class : GLMReplacePresentationsStrateqy

l

This strategy replaces the presentations from the pane of the destination port.

17

Edit distance

 Number of operations required
to get from a string to another

e Usually costs for delete or insert
is 1, substitute is 2

* Examplecost:2+1+1 =4

18

I Coherence coefficient results

C_Coeff of class comments (pharo)

C_Coeff of class comments (python) - Total - 6217
Total - 2948 100% . .
) . D, = I .
100% | W cumulative i ::.:;:ﬁ“
msm single |
w 80% i
w 80% = '
c i o -
o i £
E £ 60%
E 60% 3
8 5
S o 40%
o 0% g
© o
m - I
20%
- .-—- 0%
0.0 0.2 1.0 C Coeff

C_Coeff

Coherence coefficient examples

Class : ImageFieldTwoDimensionsTests, c_coeff = 0.60 Class : GLMReplacePresentationsStrategy, c_coeff = 0.50

* Tests behavior of an ImageField and its dimensions fields. * This strategy replaces the presentations from the pane of the destination port.
Class : AdminViewProxyModelPermissionsTests, c_coeff =1.00 Class : ClyMethodContextOfFullBrowser, c_coeff = 0.80

* Tests for proxy models permissions in the admin. * | am a context of selected methods in full browser

20

Insight

~80% of the comments are between 0.0 and 0.5

Comments are close to the class name but not too much

21

I Ratios

Number of non-empty comments : 2948
Number of comments with ¢_coeff = 0 (completely dissimilar) - 639 (21.68) %
Number of comments with ¢_coeff >= 0.5 (quite similar) - 406 (13.77) %

Number of comments with ¢_coeff >= 0.75 (really similar) - 83 (2.82) %

Number of non-empty comments : 6217
Number of comments with ¢_coeff = 0 (completely dissimilar) - 662 (10.65) %
Number of comments with c¢_coeff »= 0.5 (quite similar) : 1051 (16.91) %

Number of comments with ¢_coeff »= 0.75 (really similar) - 312 (5.02) %

22

Metric: Readability

* Flesch reading ease [0-120] : lower score means harder to read
* 0-30: Understood by university graduates
* 60-70:13-15 years old

* A score too high could mean the comment is oversimplified !

23

Flesch reading ease

Readability of comments using flesch_reading_ease (python) Readability of comments using flesch_reading_ease (pharo)
Total : 3315 Total : 7525
100% 100% : B cumulative
E e single

w 80% w 80% E
= = |
[W)]
E E |
£ 60% £ 60% '
Q o] 1
Q Q
-— ——
ST O Lo
o 0% o 0%
g k

20% 20% lI

- .l---_ o IR !--Ill II-__

0 60
Readablllty score Readability score

24

Examples

MetacelloScriptEngine runs the execution of the script for one projectSpec -> 42.61

| contain a fixed number of Slots. Instances of classes using this kind of layout have always the same size.* -> 80.40

25

Insight

Comments are mostly quite easy to read

Could have less, more impactful (technical) comments

26

Insight

@ Python dataset is sparser in the class comments compared to Pharo
Jlil Overall similar distributions
99

¥ Most comments are close but not too close to the class name

{0} Improvements can be done towards the technicality

27

Summary and future work

Analyzing source code
and comments is a
difficult task

O Write meaningful
= comments

Integrate as a plugin in
IDEs

Plan the documentation
part in the project tasks

28

Thank you for your
attention

Bibliography

1. N. Khamis, R. Witte, and J. Rilling, “Automatic Quality Assessment of Source Code
Comments: the JavadocMiner”

2. S. Scalabino, G. Bavota, et. Al., “Automatically Assessing Code Understandability:
How Far Are We?”

3. J. Arthur, K. Stevens, “Assessing the Adequacy of Documentation Through
Document Quality Indicators”

4. D. Steidl, B. Hummel, et. Al., “Quality Analysis of Source Code Comments”

5. Y. Shinyama, Y. Arahori, K. Gondow, “Analyzing Code Comments to Boost Program
Comprehension”

30

