Generating automatically class comments in
Pharo

Why do we want to generate comments?

e Possibility to spend less time on writing comments

e Create a uniform format to prevent inconsistent comments

Goal

Create a commenting tool written in Pharo

Related work Iin Java

Automatic Generation of Natural Language
Summaries for Java Classes

Laura Moreno', Jairo Aponte’, Giriprasad Sridhara’, Andrian Marcus’, Lori Pollock®, K. Vijay-Shanker®

Detroit, ML USA Bogotd, Colombia
{Imorenoc, amarcus} @wayne.edu jhapontem@unal edu.co

Abtract—Most sultware gineering tasks requie developers
to understand parts of the source code. When faced w
unfamiliar code, developers often rely on (internal or eterma)
t0 gain an overall of dhe code and
determine whether it is relevant for the current task.

documentation exists. The summaries allow developers to
understand the main goal and structure of the class. The focus of
the summaries is on the content and responsibiliies of the classes,
rather than cheir relationships with other classes. The
summarization tool determines the class and method stereotypes
and uses them, in conjunction with heuristics, to select the
information to be included in the summaries. Then it generates
the summaries using existing lexicalization tools.

A group of programmers judged a set of generated summaries
for Java classes and determined that they are readable and
understandable, they do not include extraneous information, and,
in most cases, they are not missing essential information.

Index Terms—Source code summarization, program
comprehension, documentation generation.

1. INTRODUCTION

Existing studies [1] revealed that developers often spend
more time scarching. browsing. and reading the code than
edifing it. Searching, browsing, and reading are essential
activities needed to understand software, which in tum is
needed for everyday software maintenance tasks. While
browsing the source code. developers sometimes just glance at
it to get a quick understanding and sometimes spend more fime
reading it in detail [1-3]. Skimming the code is performed in
oder o detesmine whether 3 secific pat of it s relevan o the
task at hand or When the code has good leading
comments, duelopcrs can acquire a quick understanding of the
code artifact. Unfortunately, more often than not. g
comments are missing or outdated. and therefore, developers
must spend nuuch more fime reading the code in defail in order
to gain even a superficial understanding

One approach to overcome this problem is to automatically
generate descriptive comments directly from the source code.
While successfully applied for Java methods [4]. generating
comments for more complex code artifacts. e.g. classes. is
significantly more difficult [5. 6]. Our focus here is on classes
as they are the primary decomposition unit in Object-Oriented
(00) programming languages, such as Java. In addition, the

yne State University *Universidad Nacional de Colombia *IBM Research India *University of Delaware

Bangalore, India Newark, DE, USA
gisridha@in.ibmcom {pollock, vijay} @cis.udel edu

00 paradigm supports reasoning at the object level and,
consequently, code understanding and (re)use at the class level

Unfortunately, we cannot use existing comment generation
tools for methods (e.g.. [4]) and simply merge them o create a
class summary. The reasons vary: (i) classes bundle together

ore than just methods — they also include data that the
methods presumably operate on: (i) adding together all method
descriptions would result in very large summaries, which
defeats their goals (i) not all methods are the same — some
may be relevant to describe the behavior of the class nstances.
while some may not

We propose in premicre a technique to automatically
generate structured natural-language descriptions for Java
classes. independent of their context and assuming that no
documentation exists (ic.. if it exists, the commients are not
currently used). The system takes a Java project as input. and
for each class. it outputs a natural-language summary. The
goal of the generated summaries is to support the quick
understanding of a class by describing its intent and leaving
aside its context and any algorithmic details. In this sense, the
summaries are indicative (i., provide a brief description of the
class content), abstractive (ic.. include information that is not
explicitin the class). and generic (ie.. attempt to cover only the
important information of the class).

The intended audience is any developer. especially a
novice, who is unfamiliar with the code and needs to quickly
e the gist of the class to decide whether o peruse the source

not. For example, the developer may be deciding
Whether to (reuse clast ¥ and wonderng whether it would
serve her needs; or. while reading the code of another class. she
encounters an attribute of type X and wonders what it means
Developers sometimes write comments that describe the main
sespansbliy of lss, o hlp ot developes egadlessof
their Our automatic summaries have the same goal.
All.lmngb different maintenance tasks require different kinds of
information from classes. our approach can serve as an inifial
step in the generation of specific-purpose summaries, which is
outside the scope of this paper.

Our conjecture is that the type of methods and their
distribution in a class is not accidental and denotes some design
intent, which reflects the main goal of the class. Thus, our
summarization technique first determines the stereotypes of the
class [7] and each one of its methods [8]. The stereorype
information is used in conjunction with predefined heuristics.
to select the information that will be included in the summary

Moreno et Al

Technique to generate human readable
summaries of Java classes

Focused mostly on the responsibilities of the

classes

Heuristic-based process of Moreno et Al

Class stereotypes

Java Class Class Summary

Method stereotypes

Related work in Pharo

EMSE manuscript No.
(will be inserted by the editor)

e Analyzed Class comments

‘What do class comments tell u:
evolution and practices in Pharo

An investigation of comment

e Found various information types embedded in class

Pooja Rani - Sebastiano Panichella - Manuel
Leuenberger - Mohammad Ghafari - Oscar
Nierst

comments

Abstract Previous studies have characterized code comments in different programming

languages, and have shown how a high quality of code comments is crucial to support

program comprehension activities and to improve the effectiveness of maintenance tasks. . .

Howerer, very few studies have focused on the analysis of the information embedded in code o a n CO m m e n S \X/e re \X/ rl e n a n O r m a e I n a
comments. None of them compared the developer’s practices to write the comments to the

standard guidelines and analyzed these characteristics in the Pharo Smalltalk environment.

ctices have their origins in Smalltalk-80, back 40 years,

Smalltalk traditionally separates class comments from source code. and offers a brief template

for entering a comment for newly-created classes. These templates have evolved over the

.
years, particularly in the Pharo environment. This paper reports the first empirical study
investigating commenting practices in Pharo Smalltalk. As a first step. we analyze class -

comment evolution over seven Pharo versions. Then, we quantitatively and qualitatively
analyze class comments of the most recent version of Pharo, to invest
types of Pharo comments. Finally, we study the adherence of developer commenting practices
1o the class template over Pharo versions.

e the information

‘The results of this study show that there is a rapid increase in class comments in the initial
three Pharo versions, while in subsequent versions developers added comments to both new
and old classes, thus maintaining a similar ratio. In addition. the analysis of the semantics of
the comments from the latest Pharo version suggests that 23 information types are typically
embedded in class comments by developers and that only seven of them are present in
the latest Pharo class comment templare. However. the information types proposed by the
standard template tend to be present more often than other types of information. Additionally
we find that a substantial proportion of comments follow the writing style of the template in
writing these information types, but they are written and formatted in a non-unifo
This suggests the need to standardize the commenting

m way

guidelines for formatting the text

Pooja Rani, Manuel Leuenberger, Mohammad Ghafari, Oscar Nierstrasz.
Software Composition Group. University of Bern, 3012 Bern, Switzerland
hup:/scg.unibe.clystaft

Sebastiano Panichella
Zurich University of Applied Science
E-mail: panc @zhaw.ch

Information types in Pharo comments

Information types

1. Intent

Responsibility
Collaborator

Public API

Example
Implementation Points
Instance Variables
Class references
Warnings

© ON OO pWN

Approach

Pharo-Class

Method stereotypes

1.

oA WD

Accessors

Mutators

Creational methods
Collaborational methods
Degenerate methods

Approach

Method stereotypes

1. Accessors

Mutators
Creational methods

Pharo-Class

Collaborational methods
Degenerate methods

oA WD

Class stereotypes Cortaller
1 Entity Pure controller
2) Minimal entity Large class
3. Dataprovider . Lazy class
4. Commander 11, Degenerate
5. Boundary 12, Data class
6. Factory 13. Pool

Distributions of method stereotypes

2000

1800

1600

1400

1200

1000

800

600

400

200

Accessor

Distribution of methodstereotypes for 400 random classes

Mutaors

Cregtiona

Collaborational

Degenerate

10

Distributions of class stereotypes

Classstereotype distribution over 400 random classes
300

256
250

200

150
128

112 112

100
80

48 48

Approach

Method information
1 Relevant Methods/API
2. Usage externally
3. Usage Internally

Finished
classcomment

Method stereotypes
1. Accessors
2. Mutators
Pharo-Class 3. Creational methods
4. Collaborational methods
5. Degenerate methods
Class stereotypes ~ Cortialler
1 Entity 8. Pure controller
2) Minimal entity 0. Large class
3. Dataprovider Lazy class
4. Commander 11. Degenerate
5. Boundary 12, Data class
6. Factory 13. Pool

Class information
1 Dependent classes

Classes used by the class

2.
3. Classstereotype
4 Defining Keywords

12

A generated class comment

Classname: RGContainer

I have classstereotypes:
- Boundary
- DataProvider

I am using the classes:
- RGClassDefinition

- RGTraitDefinition

- RGPackageDefinition
- OrderedCollection

- IdentityDictionary

- RGAbstractContainer

I get used by classes:
- CGldentifier

- Class

- CompiledMethod

- RGContainerTest

I have relevant public methods which are ordere by their usage:

Externally :
- allTraits
- classNamed:
- traits
- methods
- packages

Internally
- methods
- packages
- classNamed:
- extensionMethods
- definedClasses

My defining keywords are:
named,classes,package,class,trait,methods,add,do,includes,all

Classname
Classstereotype

Collaborators:;

o Used classes

o Classes using the class

Behaviour

Keywords

13

Challenges

e Extracting the needed Information
o scrML/XMLvs. AST

e Heuristical approach
o Javavs. Pharo

e Matching CRC Format

14

Future work

e Including more information in the classcomment
e \Write a plugin-integration to Pharo itself
e Evaluation of commenting tool

e Finish writing thesis

15

Personal summary

e Automatically generating comments is a helpful tool
e Beware of commenting laziness

e Generating comments should be supportive not productive

16

