
Virtual Machines

Guest lecture — Adrian Lienhard

Birds-eye view

© Adrian Lienhard 1.2

A virtual machine is an abstract computing
architecture supporting a programming
language in a hardware-independent fashion

Z1, 1938

© Adrian Lienhard 3

Roadmap

>  Introduction
>  The heap store
>  Interpreter
>  Automatic memory management
>  Threading System
>  Optimizations

© Adrian Lienhard 4

Implementing a Programming Language

© Adrian Lienhard 5

How are VMs implemented?

Typically using an efficient and portable language
such as C, C++, or assembly code

Pharo VM platform-independent part written in Slang:  
– subset of Smalltalk, translated to C 
– core: 600 methods or 8k LOC in Slang 
– Slang allows one to simulate VM in Smalltalk

© Adrian Lienhard 6

Main Components of a VM

The heap store
Interpreter
Automatic memory management
Threading System

© Adrian Lienhard 7

Pros and Cons of the VM Approach

Pros
>  Platform independence of application code 

“Write once, run anywhere”
>  Simpler programming model
>  Security
>  Optimizations for different hardware architectures

Cons
>  Execution overhead
>  Not suitable for system programming

© Adrian Lienhard 8

Roadmap

>  Introduction
>  The heap store
>  Interpreter
>  Automatic memory management
>  Threading System
>  Optimizations

© Adrian Lienhard 9

Object Memory Layout

32-bit direct-pointer scheme

Reality is more complex: 
– 1-word header for instances of compact classes 
– 2-word header for normal objects 
– 3-word header for large objects

© Adrian Lienhard 10

Different Object Formats

>  fixed pointer fields
>  indexable types: 

– indexable pointer fields (e.g., Array) 
– indexable weak pointer fields (e.g., WeakArray)  
– indexable word fields (e.g., Bitmap)  
– indexable byte fields (e.g., ByteString)

Object format (4bit) 
0 no fields 
1 fixed fields only 
2 indexable pointer fields only 
3 both fixed and indexable pointer fields 
4 both fixed and indexable weak fields 
6 indexable word fields only 
8-11 indexable byte fields only 
12-15 ...

SystemNavigation>>allObjectsDo: aBlock 	

	
 | object endMarker |	

	
 object := self someObject.	

	
 endMarker := Object new.	

	
 [endMarker == object]	

	
 	
whileFalse: [aBlock value: object.	

	
 	
 	
object := object nextObject]	

“Answer the first object on the heap”	

anObject someObject	

“Answer the next object on the heap”	

anObject nextObject	

Excludes small
integers!

Iterating Over All Objects in Memory

© Adrian Lienhard 12

Roadmap

>  Introduction
>  The heap store
>  Interpreter
>  Automatic memory management
>  Threading System
>  Optimizations

Stack vs. Register VMs

Stack machines
– Smalltalk, Java and most other VMs
– Simple to implement for different hardware architectures

Register machines
– only few register VMs, e.g., Parrot VM (Perl6)
– potentially faster than stack machines

VM provides a virtual processor that
interprets bytecode instructions

© Adrian Lienhard 14

Interpreter State and Loop

Interpreter state  
– instruction pointer (ip): points to current bytecode 
– stack pointer (sp): topmost item in the operand stack 
– current active method or block context 
– current active receiver and method

Interpreter loop  
1. branch to appropriate bytecode routine  
2. fetch next bytecode  
3. increment instruction pointer  
4. execute the bytecode routine 
5. return to 1.

© Adrian Lienhard 15

Method Contexts

method header:
– primitive index
– number of args
– number of temps
– large context flag
– number of literals

© Adrian Lienhard 16

Stack Manipulating Bytecode Routine

Example: bytecode <70> self

Interpreter>>pushReceiverBytecode	

 self fetchNextBytecode.	

 self push: receiver	

Interpreter>>push: anObject	

 sp := sp + BytesPerWord.	

 self longAt: sp put: anObject	

© Adrian Lienhard 17

Stack Manipulating Bytecode Routine

Example: bytecode <01> pushRcvr: 1

Interpreter>>pushReceiverVariableBytecode	

 self fetchNextBytecode.	

 self pushReceiverVariable: (currentBytecode bitAnd: 16rF)	

Interpreter>>pushReceiverVariable: fieldIndex	

 self push: (���
 self fetchPointer: fieldIndex ofObject: receiver)	

Interpreter>>fetchPointer: fieldIndex ofObject: oop	

 ^ self longAt: oop + BaseHeaderSize + (fieldIndex * BytesPerWord)	

© Adrian Lienhard 18

Message Sending Bytecode Routine

1. find selector, receiver and its class
2. lookup message in the class’ method dictionary
3. if method not found, repeat this lookup in successive

superclasses; if superclass is nil, instead send
#doesNotUnderstand:

4. create a new method context and set it up
5. activate the context and start executing the instructions

in the new method

Example: bytecode <E0> send: hello	

© Adrian Lienhard 19

Message Sending Bytecode Routine

Interpreter>>sendLiteralSelectorBytecode	

 selector := self literal: (currentBytcode bitAnd: 16rF).	

 argumentCount := ((currentBytecode >> 4) bitAnd: 3) - 1. 	

 rcvr := self stackValue: argumentCount.	

 class := self fetchClassOf: rcvr.	

 self findNewMethod.	

 self executeNewMethod.	

 self fetchNewBytecode	

Example: bytecode <E0> send: hello	

This routine (bytecodes 208-255)
can use any of the first 16 literals
and pass up to 2 arguments	

 E0(hex) = 224(dec)	

	
 = 1110 0000(bin)	

 E0 AND F = 0	

	
 => literal frame at 0	

 ((E0 >> 4) AND 3) - 1 = 1	

	
 => 1 argument	

© Adrian Lienhard 20

Primitives

Primitive methods trigger a VM routine
and are executed without a new
method context unless they fail

>  Improve performance (arithmetics, at:, at:put:, ...)
>  Do work that can only be done in VM (new object creation, 

process manipulation, become, ...)
>  Interface with outside world (keyboard input, networking, ...)
>  Interact with VM plugins (named primitives)

 ProtoObject>>nextObject	

 <primitive: 139>	

 self primitiveFailed	

© Adrian Lienhard 21

Roadmap

>  Introduction
>  The heap store
>  Interpreter
>  Automatic memory management
>  Threading System
>  Optimizations

© Adrian Lienhard 22

Automatic Memory Management

Challenges
– Fast allocation
– Fast program execution

Tell when an object is no longer used
and then recycle the memory

– Small predictable pauses
– Scalable to large heaps
– Minimal space usage

© Adrian Lienhard 23

Main Approaches

1. Reference Counting

2. Mark and Sweep

© Adrian Lienhard 24

Reference Counting GC

Idea
>  For each store operation increment count field in header

of newly stored object
>  Decrement if object is overwritten
>  If count is 0, collect object and decrement the counter of

each object it pointed to

Problems
>  Run-time overhead of counting (particularly on stack)
>  Inability to detect cycles (need additional GC technique)

© Adrian Lienhard 25

Reference Counting GC

© Adrian Lienhard 26

Mark and Sweep GC

Idea
>  Suspend current process
>  Mark phase: trace each accessible object leaving a mark

in the object header (start at known root objects)
>  Sweep phase: all objects with no mark are collected
>  Remove all marks and resume current process

Problems
>  Need to “stop the world”
>  Slow for large heaps !generational collectors
>  Fragmentation !compacting collectors

© Adrian Lienhard 27

Mark and Sweep GC

© Adrian Lienhard 28

Generational Collectors

Idea
>  Partition objects in generations
>  Create objects in young generation
>  Tenuring: move live objects from young to old generation
>  Incremental GC: frequently collect young generation (very fast)
>  Full GC: infrequently collect young+old generation (slow)

Difficulty
>  Need to track pointers from old to new space

Most new objects live very short lives,
most older objects live forever [Ungar 87]

© Adrian Lienhard 29

Generational Collectors: Remembered Set

Write barrier: remember objects with old-young pointers:
>  On each store check whether 

storee (object2) is young and 
storand (object1) is old

>  If true, add storand to remembered set
>  When marking young generation, use objects in remembered set as

additional roots

object1.f := object2	

© Adrian Lienhard 30

Compacting Collectors

Idea
>  During the sweep phase all live objects are packed to

the beginning of the heap
>  Simplifies allocation since free space is in one

contiguous block

Challenge
>  Adjust all pointers of moved objects

– object references on the heap
– pointer variables of the interpreter!

© Adrian Lienhard 31

The Pharo GC

Pharo: mark and sweep compacting collector
with two generations

– Cooperative, i.e., not concurrent
– Single threaded

© Adrian Lienhard 32

When Does the GC Run?

– Incremental GC on allocation count or memory needs
– Full GC on memory needs
– Tenure objects if survivor threshold exceeded

 “Incremental GC after this many allocations”	

 SmalltalkImage current vmParameterAt: 5	

 “Tenure when more than this many objects survive”	

 SmalltalkImage current vmParameterAt: 6	

4000	

2000	

© Adrian Lienhard 33

VM Memory Statistics

 SmalltalkImage current
vmStatisticsReportString	

 memory	
 	
20,245,028 bytes	

	
 old 	
 	
14,784,388 bytes (73.0%)	

	
 young 	
 	
117,724 bytes (0.6%)	

	
 used 	
 	
14,902,112 bytes (73.6%)	

	
 free 	
 	
5,342,916 bytes (26.4%)	

 GCs 	
 	
 	
975 (48ms between GCs)	

	
 full 	
 	
0 totalling 0ms (0.0% uptime)	

	
 incr 	
 	
975 totalling 267ms (1.0% uptime), avg 0.0ms	

	
 tenures	
14 (avg 69 GCs/tenure)	

 Since last view 	
90 (54ms between GCs)	

	
 uptime 	
 	
4.8s	

	
 full 	
 	
0 totalling 0ms (0.0% uptime)	

	
 incr 	
 	
90 totalling 29ms (1.0% uptime), avg 0.0ms	

	
 tenures	
1 (avg 90 GCs/tenure)	

© Adrian Lienhard 34

Memory System API

 “Force GC”	

 Smalltalk garbageCollectMost	

 Smalltalk garbageCollect	

 “Is object in remembered set, is it young?”	

 Smalltalk rootTable includes: anObject	

 Smalltalk isYoung: anObject	

 “Various settings and statistics”	

 SmalltalkImage current getVMParameters	

 ”Do an incremental GC after this many allocations"	

 SmalltalkImage current vmParameterAt: 5 put: 4000.	

 ”Tenure when more than this many objects survive the GC"	

 SmalltalkImage current vmParameterAt: 6 put: 2000.	

 ”Grow/shrink headroom"	

 SmalltalkImage current vmParameterAt: 25 put: 4*1024*1024.	

 SmalltalkImage current vmParameterAt: 24 put: 8*1024*1024. 	

© Adrian Lienhard 35

Finding Memory Leaks

– maybe object is just not GCed yet (force a full GC!)
– find the objects and then explore who references them

 PointerFinder on:	

	
 AssignmentNode someInstance	

 PointerExplorer new
openExplorerFor:
AssignmentNode someInstance	

PointerFinder finds a path
from a root to some object

I have objects that do not get collected. What’s wrong?

© Adrian Lienhard 36

Roadmap

>  Introduction
>  The heap store
>  Interpreter
>  Automatic memory management
>  Threading System
>  Optimizations

© Adrian Lienhard 37

Threading System

Multithreading is the ability to create concurrently
running “processes”

Non-native threads (green threads)
– Only one native thread used by the VM
– Simpler to implement and easier to port

Native threads
– Using the native thread system provided by the OS
– Potentially higher performance

© Adrian Lienhard 38

Pharo: Green Threads

Each process has its own execution stack, ip, sp, ...

There is always one (and only one) running process

Each process behaves as if it owns the entire VM

Each process can be interrupted (!context switching)

© Adrian Lienhard 39

Representing Processes and Run Queues

© Adrian Lienhard 40

Context Switching

1.  store the current ip and sp registers to the current context
2.  store the current context in the old process’ suspendedContext
3.  change Processor to point to newProcess
4.  load ip and sp registers from new process’ suspendedContext	

Interpreter>>transferTo: newProcess	

When you perform a context switch,
which process should run next?

© Adrian Lienhard 41

Process Scheduler

>  Cooperative between processes of the same priority
>  Preemptive between processes of different priorities

Context is switched to the first process with highest priority when:
– current process waits on a semaphore
– current process is suspended or terminated
– Processor yield is sent

Context is switched if the following process has a higher priority:
– process is resumed or created by another process
– process is resumed from a signaled semaphore

When a process is interrupted, it moves to the back of its run queue

© Adrian Lienhard 42

Example: Semaphores and Scheduling

 here := false.	

 lock := Semaphore forMutualExclusion.	

 [lock critical: [here := true]] fork.	

 lock critical: [

	
 self assert: here not.	

	
 Processor yield.	

	
 self assert: here not].	

 Processor yield.	

 self assert: here	
 When is the forked

process activated?

© Adrian Lienhard 43

Roadmap

>  Introduction
>  The heap store
>  Interpreter
>  Automatic memory management
>  Threading System
>  Optimizations

© Adrian Lienhard 44

Many Optimizations...

>  Method cache for faster lookup: receiver's class + method selector
>  Method context cache (as much as 80% of objects created are

context objects!)

>  Interpreter loop: 256 way case statement to dispatch bytecodes

>  Quick returns: methods that simply return a variable or known
constant are compiled as a primitive method

>  Small integers are tagged pointers: value is directly encoded in field
references. Pointer is tagged with low-order bit equal to 1. The
remaining 31 bit encode the signed integer value.

>  ...

© Adrian Lienhard 45

Optimization: JIT (not in Pharo)

Idea of Just In Time Compilation
>  Translate unit (method, loop, ...) into native machine code at runtime
>  Store native code in a buffer on the heap

Challenges
>  Run-time overhead of compilation
>  Machine code takes a lot of space (4-8x compared to bytecode)
>  Deoptimization is very tricky

Adaptive compilation: gather statistics to compile only units that
are heavily used (hot spots)

References

>  Virtual Machines, Iain D. Craig, Springer, 2006
>  Back to the Future – The Story of Squeak, A Practical Smalltalk
Written in Itself, Ingalls, Kaehler, Maloney, Wallace, Kay, OOPSLA ‘97
>  Smalltalk-80, the Language and Its Implementation (the Blue Book),
Goldberg, Robson, Addison-Wesley, ‘83 http://stephane.ducasse.free.fr/
FreeBooks/BlueBook/Bluebook.pdf

>  The Java Virtual Machine Specification, Second Edition, http://
java.sun.com/docs/books/jvms/
>  Stacking them up: a Comparison of Virtual Machines, Gough, IEEE‘01
>  Virtual Machine Showdown: Stack Versus Registers, Shi, Gregg,
Beatty, Ertl, VEE’05

© Adrian Lienhard 46

© Adrian Lienhard 47

What you should know!

✎  What is the difference between the operand stack and
the execution stack?

✎  How do bytecode routines and primitives differ?
✎  Why is the object format encoded in a complicated 4bit

pattern instead of using regular boolean values?
✎  Why is the object address not suitable as a hash value?
✎  What happens if an object is only weakly referenced?
✎  Why is it hard to build a concurrent mark sweep GC?
✎  What does cooperative multithreading mean?
✎  How do you protect code from concurrent execution?

© Adrian Lienhard 48

Can you answer these questions?

✎  There is a lot of similarity between VM and OS design.
What are the common components?

✎  Why is accessing the 16th instance variable of an object
more efficient than the 17th?

✎  Which disastrous situation could occur if a local C
pointer variable exists when a new object is allocated?

✎  Why does #allObjectsDo: not include small integers?
✎  What is the largest possible small integer?

© Adrian Lienhard 1.49

Attribution-ShareAlike 3.0 Unported
You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.

Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

License

http://creativecommons.org/licenses/by-sa/3.0/

