
13. Traits!

Selected literature!

>  Cook. Interfaces and Specifications for the
Smalltalk-80 Collection Classes. OOPSLA 1992"

>  Taivalsaari. On the Notion of Inheritance. ACM
Computing Surveys, September 1996."

>  Black, et al. Applying Traits to the Smalltalk
Collection Hierarchy. OOPSLA 2003"

>  Ducasse, et al. Traits: A Mechanism for fine-grained
Reuse. ACM TOPLAS, March 2006."

>  Cassou, et al. Traits at Work: the design of a new
trait-based stream library. JCLSS 2009"

© Oscar Nierstrasz"

Traits"

2	

http://scg.unibe.ch/scgbib?query=stlit-traits"

© Oscar Nierstrasz"

ST — Smalltalk Basics"

2.3	

Roadmap!

>  Why traits?"
>  Traits in a Nutshell"
>  Case study — Streams"
>  Traits in Pharo"
>  Future of Traits"

© Oscar Nierstrasz"

ST — Smalltalk Basics"

2.4	

Roadmap!

>  Why traits?!
>  Traits in a Nutshell"
>  Case study — Streams"
>  Traits in Pharo"
>  Future of Traits"

Problem: how to share behaviour across class
hierarchies?!

© Oscar Nierstrasz"

Traits"

5	

There are hundreds of methods we would
like RectangleMorph to inherit from
both Rectangle and Morph!

The trouble with Single Inheritance!

>  Where to put the shared behaviour?"
—  Sharing too high ⇒ inappropriate methods must be “cancelled”"

>  Duplicating code"
—  Impacts maintenance"

>  Delegate"
—  Ugly boilerplate delegation code"

© Oscar Nierstrasz"

Traits"

6	

The trouble with Multiple Inheritance!

>  Conflicts must be resolved"
—  Implicit resolution leads to

fragility when refactoring"
>  No unique super class"

—  Must explicitly name super
methods to compose them"

>  Diamond problem"
—  What to do about features

inherited along two paths?"

© Oscar Nierstrasz"

Traits"

7	

an IdentitySet
(#topRight
#align:with: #right:
#leftCenter #bottom
#center #height
#right #topCenter
#extent #bottomCenter
#topLeft #width
#printOn:
#containsPoint: #left
#top #intersects:
#bottomLeft #bottom:
#bottomRight #top:
#left: #rightCenter)!

Rectangle selectors select:!
 [:s | Morph selectors includes: s]!

Mixins extend single inheritance with features
that can be mixed into a class!

© Oscar Nierstrasz"

Traits"

8	

The trouble with Mixins!

>  Mixins are composed linearly to resolve conflicts"
—  Conflict resolution is sensitive to mixin composition order"
—  Composing entity has no control!"

>  Fragile hierarchy"
—  Changes may impact distant classes"

© Oscar Nierstrasz"

Traits"

9	

© Oscar Nierstrasz"

ST — Smalltalk Basics"

2.10	

Roadmap!

>  Why traits?"
>  Traits in a Nutshell!
>  Case study — Streams"
>  Traits in Pharo"
>  Future of Traits"

Traits are parameterized behaviours!

>  A trait"
—  provides a set of methods"
—  requires a set of methods!
—  may be composed of other traits"

>  Traits do not specify any state!!

© Oscar Nierstrasz"

Traits"

11	

= aRectangle!
!^ self species = aRectangle species!
! !and: [self origin = aRectangle origin]!
! !and: [self corner = aRectangle corner]!

Class = superclass + state + traits + glue!

© Oscar Nierstrasz"

Traits"

12	

The class retains full control of the composition!

Both traits and classes can be composed of
traits!

© Oscar Nierstrasz"

Traits"

13	

Trait named: #NSTPuttablePositionableStream!
!uses: NSTPuttableStream + NSTPositionableStream!
!category: 'Nile-Base-Traits'!

Object subclass: #NSTextStream!
!uses: NSTPuttablePositionableStream + NSTCharacterWriting!
!instanceVariableNames: 'collection position writeLimit readLimit'!
!classVariableNames: ''!
!poolDictionaries: ''!
!category: 'Nile-Clients-TextStream'!

Trait composition rules!

1.  Class methods take precedence over trait methods!
2.  Conflicts are resolved explicitly"
3.  Traits can be flattened away"

© Oscar Nierstrasz"

Traits"

14	

Class methods take precedence over trait
methods!

© Oscar Nierstrasz"

Traits"

15	

RectangleMorph>>printOn:
prevails over Morph>>printOn:!

Trait composition rules!

1.  Class methods take precedence over trait methods"
2.  Conflicts are resolved explicitly!
3.  Traits can be flattened away"

© Oscar Nierstrasz"

Traits"

16	

Conflicts are resolved explicitly!

© Oscar Nierstrasz"

Traits"

17	

RectangleMorph subclass: #Morph!
!uses: TRectangle @ {rectanglePrintOn: -> #printOn:}!
! ! ! ! ! !– {#align:with: . #topRight . … }!
!instanceVariableNames: ''!
!classVariableNames: ''!
!poolDictionaries: ''!
!category: 'Morphic-TraitsDemo'!

Aliasing introduces an additional name for a method"
Exclusion removes a method from a trait"

Trait composition rules!

1.  Class methods take precedence over trait methods"
2.  Conflicts are resolved explicitly"
3.  Traits can be flattened away!

© Oscar Nierstrasz"

Traits"

18	

Traits can be flattened away!

© Oscar Nierstrasz"

Traits"

19	

A class using traits is
equivalent to class
that defines those
traits locally"

© Oscar Nierstrasz"

ST — Smalltalk Basics"

2.20	

Roadmap!

>  Why traits?"
>  Traits in a Nutshell"
>  Case study — Streams!
>  Traits in Pharo"
>  Future of Traits"

Cassou, et al. Traits at Work: the design of a
new trait-based stream library. JCLSS 2009.!

The trouble with Streams!

© Oscar Nierstrasz"

Traits"

21	

unused state!

methods too high!

copying!

canceling!

reimplementation!

The Nile core!

© Oscar Nierstrasz"

Traits"

22	

Nile Stream classes!

© Oscar Nierstrasz"

Traits"

23	

no methods too high!
no copying!
no unused state!
no reimplementation!
limited canceling!

Other Nile Stream classes!

© Oscar Nierstrasz"

Traits"

24	

Assessment!

>  High reuse achieved"
—  40% less code in Stream hierarchy"

>  More general abstractions"
—  Streams on any Collection"
—  With equal or better performance"

>  Design traits around abstractions, not reuse"
—  Avoid too fine-grained traits"

>  Traits or classes?"
—  Prefer classes — use traits to resolve design conflicts"

© Oscar Nierstrasz"

Traits"

25	

© Oscar Nierstrasz"

ST — Smalltalk Basics"

2.26	

Roadmap!

>  Why traits?"
>  Traits in a Nutshell"
>  Case study — Streams"
>  Traits in Pharo!
>  Future of Traits"

© Oscar Nierstrasz"

ST — Understanding Classes and Metaclasses"

12.27	

Traits in Pharo!

>  Language Extension"
—  Extended the language kernel to represent traits"
—  Modified the compilation process for classes  

built from traits"
>  No changes to the VM"

—  Essentially no runtime performance penalty"
—  Except indirect instance variable access"
—  But: This is common practice anyway"

>  No duplication of source code"
—  Only byte-code duplication when installing methods"

© Oscar Nierstrasz"

ST — Understanding Classes and Metaclasses"

12.28	

Traits in Pharo 1.0!

Object subclass: #Behavior!
!uses: TPureBehavior @!
! !{ #basicAddTraitSelector:withMethod:!
! ! !-> #addTraitSelector:withMethod: }!
!instanceVariableNames: 'superclass methodDict format!
! !traitComposition localSelectors'!
!classVariableNames: 'ObsoleteSubclasses'!
!poolDictionaries: ''!
!category: 'Kernel-Classes'!

OmniBrowser supports trait browsing and
navigation!

© Oscar Nierstrasz"

Traits"

29	

navigation! browsing! required methods!

Traits can be manipulated from the browser!

© Oscar Nierstrasz"

Traits"

30	

Traits and Classes share common behaviour!
Traits"

31	

Can classes share compiled methods from
traits?!

© Oscar Nierstrasz"

Traits"

32	

Two problems:!
1.  super is statically bound"
2.  compiled methods know their class"

⇒methods are copied to method
dictionaries when they are installed"

© Oscar Nierstrasz"

ST — Smalltalk Basics"

2.33	

Roadmap!

>  Why traits?"
>  Traits in a Nutshell"
>  Case study — Streams"
>  Traits in Pharo"
>  Future of Traits!

The future of Traits!

>  Stateful traits"
—  some experimental solutions …"

>  Tool support"
—  limited browser support in Pharo"

>  Automatic refactoring"
—  some experiments with formal concept analysis"

>  Pure trait-based language"
—  can traits and classes be unified?"

>  Traits in other languages"
—  Perl, Scala, Fortress, … ""

© Oscar Nierstrasz"

Traits"

34	

© Oscar Nierstrasz"

Traits"

1.35	

Attribution-ShareAlike 3.0 Unported!
You are free:"

to Share — to copy, distribute and transmit the work"
to Remix — to adapt the work"

Under the following conditions:"
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work)."
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license."

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page."

Any of the above conditions can be waived if you get permission from the copyright holder."
Nothing in this license impairs or restricts the author's moral rights."

License!

http://creativecommons.org/licenses/by-sa/3.0/	

