
Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

In this exercise, you will write your first complete program. The program is very simple, the goal of
the exercise is to get used to the Pharo environment and the basics of the language. From the Pharo by
Example book, you should read the chapters 5-7.

Use a fresh pharo1.0-10451-BETAweb09.09.3 image to answer all questions.

3. A Simple Counter

We want you to implement a simple counter that follows the small example given below.

|counter|
counter := SimpleCounter new.
counter increment; increment.
counter decrement.
counter value = 1

The first part of this exercise series is a tutorial that will guide you in building the counter example.

Creating your own class

In this part you will create your first class. A class is associated with a category (a folder containing the
classes of your project).

The steps we will do are the same ones every time you create a class, so memorize them well. We
are going to create a class SimpleCounter in a category called DemoCounter. Figure 1 shows the
result of creating such a category.

Figure 1: The category is created.

1

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

Creating a Class category

In the System Browser, get the context menu on the left pane (alt-click on the mac) and select add item.
The system will ask you a name. You should write DemoCounter. This new category will be created
and added to the list.

Creating a Class

Creating a class requires five steps. They consist basically of editing the class definition template to
specify the class you want to create.

1. Superclass Specification. First, specify the superclass of the class you are creating. The class
definition template should show Object by default, which is exactly what we want.

2. Class Name. Next, you should fill in the name of your class by replacing the word NameOfSubClass
with the word SimpleCounter. Take care that the name of the class starts with a capital letter
and that you do not remove the # sign in front.

3. Instance Variable Specification. Then, you should fill in the names of the instance variables of
this class. We need one instance variable called value.

4. Class Variable Specification. As we do not need any class variable make sure that the argument
for the class instance variables is an empty string (classVariableNames: ’’).

5. Compilation. That’s it! We now have a filled-in class definition for the class SimpleCounter.
To define it, we still have to compile it. Therefore, select the accept option from the operate menu
(right-click button of the mouse). The class SimpleCounter is now compiled and immediately
added to the system.

As we are disciplined developers, we provide a comment to SimpleCounter class by clicking ?
button of the class definition. You can write the following comment:

SimpleCounter is a concrete class which supports incrementing
and decrementing a counter.

Instance Variables:

value <Integer>

Select accept to store this class comment in the class.

Defining protocols and methods

In this part you will use the System Browser to learn how to add protocols and methods.

2

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

Creating and Testing methods

The class we have defined has one instance variable value. You should remember that in Smalltalk,
everything is an object, that instance variables are private to the object and that the only way to interact
with an object is by sending messages to it.

Therefore, there is no other mechanism to access the instance variables from outside an object than
sending a message to the object. What you can do is to define messages that return the value of the
instance variable of a class. Such methods are called accessors, and it is a common practice to always
define and use them. We start to create an accessor method for our instance variable value.

Remember that every method belongs to a protocol. These protocols are just a group of methods
without any language semantics, but convey important navigation information for the reader of your
class. Although protocols can have any name, Smalltalk programmers follow certain conventions for
naming these protocols. If you define a method and are not sure what protocol it should be in, first go
through existing code and try to find a fitting name.

An important remark: Accessors are normally defined in protocols accessing or private. Use
the accessing protocol when a client object (like an interface) really needs to access your data. Use
private to clearly state that no client should use the accessor. This is purely a convention. There is
no way in Smalltalk to enforce access rights like private in C++ or Java. To emphasize that objects are
not just data structure but provide services that are more elaborated than just accessing data, put your
accessors in a private protocol. As a good practice, if you are not sure then define your accessors in a
private protocol and once some clients really need access, create a protocol accessing and move
your methods there. Note that this discussion does not seem to be very important in the context of this
specific simple example. However, this question is central to the notion of object and encapsulation of
the data. An important side effect of this discussion is that you should always ask yourself when you, as
a client of an object, are using an accessor if the object is really well defined and if it does not need extra
functionality.

Exercise 3.1: Accessor

Decide in which protocol you are going to put the accessor for value. We now create the accessor
method for the instance variable value. Start by selecting the class DemoCounter in a browser, and
make sure the Instance button is selected. Create a new protocol by clicking the right-button of the
mouse on the pane of methods categories, and choosing New Category, and give a name. Select the
newly created protocol. Then in the bottom pane, the edit field displays a method template laying out the
default structure of a method. Replace the template with the following method definition:

value
"return the current value of the value instance variable"

ˆvalue

This defines a method called value, taking no arguments, having a method comment and returning
the instance variable value. Then choose accept in the operate menu (right button of the mouse) to
compile the method. You can now test your new method by typing and evaluating the next expression in
a Workspace, in the Transcript, or any text editor SimpleCounter new value.

3

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

This expression first creates a new instance of SimpleCounter, and then sends the message value
to it and retrieves the current value of value. This should return nil (the default value for nonini-
tialised instance variables; afterwards we will create instances where value has a reasonable default
initialisation value).

Exercise 3.2: Mutator

Another method that is normally used besides the accessor method is a so-called mutator method. Such a
method is used to change the value of an instance variable from a client. For example, the next expression
first creates a new SimpleCounter instance and then sets the value of value to 7:

SimpleCounter new value: 7

This mutator method does not currently exist, so as an exercise write the method value: such that,
when invoked on an instance of SimpleCouter, the value instance variable is set to the argument
given to the message. Test your method by typing and evaluating the expression above.

Exercise 3.3: Operations

Implement the following methods in the protocol operations.

increment
self value: self value + 1

decrement
self value: self value - 1

Now test the methods increment and decrement but pay attention that the counter value is not
initialized. Try:
SimpleCounter new value: 0; increment; value.

Exercise 3.4: Printing

Implement the following methods in the protocol printing

printOn: aStream
super printOn: aStream.
aStream nextPutAll: ’ with value: ’,
self value printString.
aStream cr.

Now test the printing method by evaluating the following code:
SimpleCounter new value: 5.

Note that the method printOn: is used when you print an object or click on self in an inspector.

4

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

Exercise 3.5: Adding an instance initialization method

Now we have to write an initialization method that sets a default value to the value instance variable.
However, as we mentioned the initialize message is sent to the newly created instance. This means
that the initialize method should be defined at the instance side as any method that is sent to an
instance of SimpleCounter like increment and decrement. The initialize method does
not have specific and predefined semantics; it is just a convention to name the method that is responsible
to set up the instance variable default values.

Therefore at the instance side, you should create a protocol initialization, and create the fol-
lowing method (the body of this method is left blank. Fill it in!).

initialize
"set the initial value of the value to 0"

Now create a new instance of class SimpleCounter. Is it initialized by default? The following
code should now work without problem: SimpleCounter new increment

Exercise 3.6: Monticello Package

While going through the tutorial, you have build code for a class that’s inside a category. Now we want to
save this code with Monticello. For that, open the Monticello Browser, add a package for DemoCounter
and save it on your disk (or SqueakSource).

Figure 2: Your package is created.

Exercise 3.7: SUnit

In the tutorial, we tested a lot of code by hand. Wouldn’t it be nice to be able to recored those tests for
easy replay? That’s what Unit Tests are made for.

First add a class SimpleCounterTest:

TestCase subclass: #SimpleCounterTest
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’DemoCounter’

5

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

Then, to make sure everything works, a trivial test method:

testNew
self assert: SimpleCounter new class = SimpleCounter

Open the testrunner and run the test to see if everything is Ok!
At the beginning of the tutorial, we had a snipped of code:

|counter|
counter := SimpleCounter new.
counter increment; increment.
counter decrement.
counter value = 1

Take this code and make a test out of it.
Write one test for everything tested by hand before (that is, one test for exercises 3.1 to 3.5 each).

Exercise 3.8: Another instance creation method

If you want to be sure that you have really understood the distinction between instance and class methods,
you should now define a different instance creation method named withValue:. This method receives
an integer as argument and returns an instance of SimpleCounter with the specified value. The
following expression should return 20.

(SimpleCounter withValue: 19) increment ; value

• Before writing any code, write a test!

• Now implement the method withValue: to get the test green.

Exercise 3.9: Collections

| anArray sum |
sum := 0.
anArray := #(21 23 53 66 87).
anArray do: [:item | sum := sum + item].
sum

What is the final result of sum ? How could this piece of code be rewritten to use explicit array
indexing (with the method at:) to access the array elements1? Test your version. Rewrite this code
using inject:into:

Please save the Monticello package DemoCounter and send it by mail to st-staff@iam.unibe.ch.
Attach your written solutions that are not part of the source-code to the mail or hand them in as
hardcopy at the beginning of the next exercise session. Your mail and solutions should be clearly
marked with names and matrikel numbers of all solution authors.

1Note this is how you would implement it with Java or C++

6

mailto:st-staff@iam.unibe.ch

