
Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
Lukas Renggli, David Röthlisberger, Timur Altun

5 Seaside: Getting Started

Exercise 1 Make sure you are using a pharo-web image with Seaside loaded.
If you have a class named WATask you are ready to go. If not, grab the latest
pharo-web image from http://www.pharo-project.org/pharo-download. Make
sure your Seaside server is up and running by accessing the example application
at http://localhost:8080/seaside/examples/counter.

Exercise 2 Load the Monticello package Tutorial.mcz that you can download
from the lecture website by dragging and dropping it over the image. The
package contains some class skeletons that will assist you to solving these and
the following exercises. Save your image.

5.1 Development Tools

Exercise 3 Use your web browser to navigate to the counter example appli-
cation. Toggle on the halos to see the border of the component this application
is built of. Experiment and interact with the application in render- and source-
mode.

Exercise 4 Change the behavior of the increase and decrease buttons: edit
the methods #increase and #decrease from within the web browser to increase
by 2 and decrease by 3.

Exercise 5 Inspect the living component from within the web browser. There
are two instance variables visible, whereas count is representing the state of the
component. The other instance variable is defined in a super-class of WACounter

and will be discussed later on.

Exercise 6 Change the background color of the web application by using
the style editor from within your web browser. Try using something like body {
background-color: yellow; }.

Exercise 7 Introduce an error to the method #increase using your web
browser. Play with your application so that the error occurs. Click on the
debug link which opens a debugger within your image. Fix the bug and proceed
the evaluation.

5.2 Control Flow

We will implement a simpler guess-a-number game. Some skeletons are pro-
vided, so you don’t need to implement all by yourself.

5.2.1 User Guesses a Number

Exercise 8 Have a look at the source code of STUserNumberGuesser in the
category Tutorial-Tasks and play the game several times to make sure it works

1

http://www.pharo-project.org/pharo-download
http://localhost:8080/seaside/examples/counter


Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
Lukas Renggli, David Röthlisberger, Timur Altun

as expected.

Exercise 9 Modify the method #go in STUserNumberGuesser to count the
number of guesses. Show the total number of guesses the user required to get
the right number in the end of the game.

Question 10 Try using the back button while playing the game. How does
the application handle this?

Question 11 What happens if you open multiple windows in the same session
and play within the different windows independently?

Question 12 Is it possible to cheat the counter by using the back button or
by opening new windows within the same session? Does this behavior change if
you use an instance variable instead of a temporary one for counting?

5.2.2 Computer Guesses a Number

Exercise 13 Write a new web application that allows the computer to guess
a number the user is thinking of. In case you run into troubles, you can always
have a look at the implementation of STUserNumberGuesser.

1. Create a subclass of WATask called STComputerNumberGuesser.

2. Create an initialization method on the class side of the newly created
class, registering the component as a new web application with the path
segment cng. Make sure to evaluate the newly created method.

3. Implement the method #go following the rules of the game. Use #inform:

to tell the user what he should do and #confirm: to ask the user if the
guess of the computer is too big.

4. Play the game several times to make sure it works as expected.

Exercise 14F Implement yet another task asking the user if he wants to guess
or not. Depending on the answer either call STUserNumberGuesser or STComputer-
NumberGuesser. Modify those two classes to answer the numbers of steps required
and call them from within your new task. Don’t forget to register your new
application with a class initialization method.

5.2.3 TicTacToe Game

There are three prepared classes for this game in the category Tutorial-TicTacToe
following the MVC-Pattern:

Model STTicTacToeController is a simple model of a game holding the current
board configuration. It includes methods to access and modify its con-
figuration (#boardAt: and #boardAt:put:), a method to look for the best
possible move of a given player (#find:) and several tester to query the
state of the game (#isEmpty, #isFinished, #isWinner:).

2



Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
Lukas Renggli, David Röthlisberger, Timur Altun

View STTicTacToeView is a simple Seaside view onto the game model. You will
learn later on how to create views with Seaside.

Controller STTicTacToeController is a subclass of WATask and this is the place
that needs your work now. It already implements a few convenience meth-
ods like #newModel, #computerMove and #userMove.

Exercise 15 Register STTicTacToeController as a new web-application, but
this time don’t use a class initialization method but the configuration interface.
Make sure that you have a method #canBeRoot on the class-side so that Seaside
recognizes this class as a possible root of a web application. Browse to http:
//localhost:8080/seaside/config, enter your password, add a new entry point
with the name ttt and select STTicTacToeController as the root component.

Exercise 16 Implement the game in the method #go using the provided
convenience methods. You will also need some testing methods of the model to
check if the game is finished (#isFinished) and who was the winner (#winner).
Don’t put all your code into one single method, split it among different ones to
ensure readability. Ask the user in the beginning of the game if he prefers to
start playing or not.

Please save the Monticello package Tutorial and send it by mail to st-
staff@iam.unibe.ch. Attach your written solutions that are not part
of the source-code to the mail or hand them in as hardcopy at the
beginning of the next exercise session. Your mail and solutions should
be clearly marked with names and matrikel numbers of the solution
authors.

3

http://localhost:8080/seaside/config
http://localhost:8080/seaside/config
mailto:st-staff@iam.unibe.ch
mailto:st-staff@iam.unibe.ch

	Seaside: Getting Started
	Development Tools
	Control Flow
	User Guesses a Number
	Computer Guesses a Number
	TicTacToe Game



