
Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
Lukas Renggli, David Röthlisberger, Timur Altun

6 Seaside: Components

These exercises and the ones next week will be using an example of a possible
real-world web application. The application is about implementing a ticket
box application useable by a theater company having different plays in their
program. The application should manage the plays, the shows and the booking
of the tickets.

6.1 Introduction

Here we will be starting step by step building up this project. Follow the
exercises one by one as they depend on each other.

STTheater STPlay

STShowSTTicket

*1

*

1

* 1

Figure 1: Theater-Model

All the code should be put into the categories Theater-Model, Theater-View
and Theater-Tests. The category Theater-Model contains a very simple model,
as seen in Figure 1, to be used to build up a web-interface around. Feel free to
enhance the model when you need to do so, but do run the tests and add new
ones to make sure that all the features work as expected after your modifications.

On the class side of STTheater you can find a method #default returning
the domain model to be used for the web application. Usually you do not keep
your model just within the image, but use a proper external storage mechanism
instead: this can be simply done by dumping out the object graph to the filesys-
tem from time to time or by using a relational- or object-database. However, as
possible storage strategies are out of the scope here, we will just keep everything
within the image.

Exercise 1 Start out by creating a new task called STBuyTicketTask that will
model the steps required to buy a ticket. Register it as a new Seaside application
as you will need it later on to test your components. Put self inform: ’Hello

World’ into the method #go for now. By the end of this section this method
should define the flow as seen in Figure 2.

6.2 Choosing a Play

Exercise 2 Create a subclass of WAComponent called STPlayChooser that will
give the user the possibility to choose a theater-play. Add an instance variable
plays and create accessors to hold a collection of plays that should be displayed

1



Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
Lukas Renggli, David Röthlisberger, Timur Altun

STPlayChooser

STShowChooser

STTicketChooser

STTicketPrinter

ok

ok

sort

ok

cancel

validation

validation /
filter / next

Figure 2: Theater-Flow as defined by STBuyTicketTask

Figure 3: View of STPlayChooser

with this component. Call your newly created component from STBuyTicketTask,
but don’t forget to initialize it with the collection of plays. If you browse to
your application, you should get a blank page as you haven’t defined any view
yet.

Exercise 3 Implement the method #renderContentOn:. As a first step, enu-
merate the plays and display the title of each. If you go back to your web browser
and refresh, you should see the titles now. Then display the other information
you get from the model. Use your own style sheet or copy the example from
Figure 4 to make the output look like Figure 3.

Exercise 4 So far there is no interaction possible with the component. Create
an anchor-callback around the title and answer the selected play to the caller.
Test your code by extending the task that is calling your component and inform
the user about the selected play.

Exercise 5F To set up the list of the plays more convenient, add three links
at the top of the page to make it possible to sort the plays according to #title,
#kind or #author. To remember the state of the selected sort order you need to

2



Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
Lukas Renggli, David Röthlisberger, Timur Altun

.sort {
background: #eeeeee;
padding: 5px;

}
.play { 

margin-top: 10px; 
}
.play .head {

font-size: 16pt;
}
.play .body {

margin-left: 10px;
width: 490px;

}

Figure 4: Stylesheet of STPlayChooser

add another instance variable. Make it also possible to sort in reverse order by
clicking a second time onto the same link.

6.3 Choosing a Show

Exercise 6 Create another subclass of WAComponent called STShowChooser that
allows the user to choose a show. Add instance variables to hold a collection
of shows to choose from and one for the current selection. Create appropriate
accessors and call your newly created and properly initialized component from
STBuyTicketTask.

Figure 5: View of STShowChooser

Exercise 7 Implement the method #renderContentOn: using Figure 5 as a
reference; don’t worry about the filter yet. Make sure hitting ok only answers if
the user actually selected a valid show, else show a message that a selection is
missing and return to the dialog. Add a button to select the next possible show
automatically.

Exercise 8F Implement a facility to allow filtering for a certain date range.
Write a method returning a possible list of dates and add two instance variables
to keep the selected date for start and end of the period to be filtered. Render
two drop-down boxes and a button to update the filtered list. Use AJAX to
update the list of shows without the need to press the update button anymore.

3



Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
Lukas Renggli, David Röthlisberger, Timur Altun

Exercise 9F Experiment with other form controls. How does the interface
look like when using option-boxes instead of the list? What do you need to
change in the code?

6.4 Buying and Printing Tickets

Exercise 10 Write a component that allows the user to select the number of
tickets he wants to buy. Give an error message, if there are not enough places
available for the selected show or if the user doesn’t enter a valid number.
Update the domain model according to the tickets sold and answer a collection
of tickets to the task. The view of a minimal implementation can be seen in
Figure 6.

Figure 6: View of STTicketChooser

Exercise 11 Last but not least write yet another component printing out a
collection of tickets. This might look like Figure 7. No links or form elements
are required in this component. Update your flow accordingly.

Figure 7: View of STTicketPrinter

Please save the Monticello package Tutorial and send it by mail to st-
staff@iam.unibe.ch. Attach your written solutions that are not part
of the source-code to the mail or hand them in as hardcopy at the
beginning of the next exercise session. Your mail and solutions should
be clearly marked with names and matrikel numbers of the solution
authors.

4

mailto:st-staff@iam.unibe.ch
mailto:st-staff@iam.unibe.ch

	Seaside: Components
	Introduction
	Choosing a Play
	Choosing a Show
	Buying and Printing Tickets


