
Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
Lukas Renggli, David Röthlisberger, Timur Altun

7 Seaside: Composition

In this weeks exercises we will compose and extend the different components we
have written during the last weeks exercises. We will now extend the existing
code with an appealing user interface and with a snappy navigation for our
imaginary theater company.

Figure 1: View of STMainFrame

7.1 Frame, Subcomponent and Backtracking

Exercise 1 Create a new subclass of WAComponent and register it as a new
entry point to your application. Render into different div-tags the name of the
theater and the current season; you can find this information in the model. Also
create a simple menu that is empty for now. Create a style-sheet to make the
application look nicer.

Exercise 2 Add an instance variable to your main-frame to hold a child
component. Create a method #buyTicket that initializes the variable with a new
instance of STBuyTicketTask and send #buyTicket in the initialization method
of the component. Place the child beside the menu you have created before.
Don’t forget to implement the message #children, else you will sooner or later
run into troubles. Create a menu item called Buy Ticket that sends the message
#buyTicket when clicked. Enjoy the application with the halos turned on.

Exercise 3 Test the new functionality you implemented. Especially try out
the behavior of the application when using the back-button. Try clicking on Buy
Ticket, hit the back-button of your web-browser and then click on any link or
control within the child-component. Why do you get an error? Fix the problem
and make sure everything works as expected.

7.2 Reuse of Components

In this part of the exercises you are basically free about the implementation
details of a new requirement of the application: The theater company wants to

1



Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
Lukas Renggli, David Röthlisberger, Timur Altun

be able to let the customers return tickets and exchange them with another one
from the same play but a different show.

Exercise 4 Use the id of the ticket to identify the one to be replaced. Prob-
ably you need to improve the model to make the necessary mutations possible.
Also write tests to ensure it works as expected. For the web interface try to write
as few lines of code as possible. Reuse the existing components that you have
written in the previous steps. You might also want to use components provided
by the framework. The example solution requires 7 lines of code, including the
validation of the ticket id. Can you do it with less lines of code?

7.3 Reporting

Exercise 5F Create a new component called STShowReport showing a report
of all the shows from the model as seen in Figure 2. Use WABatchedList to
enable the batching of the huge list and only display 10 items at once. For the
reporting you might want to use WATableReport or write your own component.
By default the list should be sorted according to the timestamp. Add the new
component to the menu in the main-frame.

Figure 2: View of STShowReport with halos toggled on

Please save the Monticello package Tutorial and send it by mail to st-
staff@iam.unibe.ch. Attach your written solutions that are not part
of the source-code to the mail or hand them in as hardcopy at the
beginning of the next exercise session. Your mail and solutions should
be clearly marked with names and matrikel numbers of the solution
authors.

2

mailto:st-staff@iam.unibe.ch
mailto:st-staff@iam.unibe.ch

	Seaside: Composition
	Frame, Subcomponent and Backtracking
	Reuse of Components
	Reporting


