
Hopscotch: Towards User Interface Composition
Vassili Bykov

Cadence Design Systems, 2655 Seely Ave, San Jose, CA 95134

Abstract

Hopscotch is the application framework and development environment of Newspeak, a new programming language
and platform inspired by Smalltalk, Self and Beta. Hopscotch avoids a number of design limitations and shortcomings
of traditional UIs and UI frameworks by favoring an interaction model and implementing a framework architecture
that enable composition of interfaces. This paper discusses the deficiencies of the traditional approach, provides an
overview of the Hopscotch alternative and analyses how it improves upon the status quo.

1. Introduction

Newspeak [1] is a programming language and
platform being developed by a team led by Gilad
Bracha at Cadence Design Systems, Inc. The sys-
tem is currently hosted inside Squeak [2], a descen-
dent of Smalltalk-80 [3]. Smalltalk, along with Self
[4] and Beta [5], is also among the most important
influences on the design of the Newspeak language.

This paper focuses on Hopscotch, the applica-
tion framework of Newspeak and the Newspeak
IDE implemented concurrently with the frame-
work. The framework and the IDE allow easy nav-
igation through the complex information space of
Newspeak, achieve usability improvements over the
traditional Smalltalk tools as found in Squeak, and
support easy creation of new tools by composing
existing ones.

In the development of interactive systems, solid
technical foundations and attention to usability is-
sues are equally important contributors to final suc-
cess. Developers that neglect one of these areas are
likely to find that problems in the neglected area
adversely affect not only the overall result, but also
the progress in their area of focus. We believe that
the positive results we have had building and using

Email address: vassili@cadence.com (Vassili Bykov).

Hopscotch are attributable to its revised interaction
and navigation model as much as to the underlying
framework architecture. For this reason, this paper
pays equal attention to the compositional frame-
work architecture and to the changes in the inter-
action model of Hopscotch compared to more tradi-
tional development environments.

2. Traditional Interface Construction

The art of devising forms to be filled in depends
on three elements: obscurity, lack of space, and
the heaviest penalties for failure.

C. Northcote Parkinson

The traditional approach to user interface con-
struction is based on the metaphor of a form 1 . A
window is subdivided into areas, each occupied by
a widget (called a control or a view by some frame-
works). A widget is a reusable component display-
ing a simple generic data object like a string or a list
of strings in a certain visual form such as a static
label, an editable text area or a list box. A widget
can also recognize user input gestures and translate
them into actions on the data such as text editing.
While a widget can become quite specialized (for ex-

1 The commonly referred to ”desktop metaphor” concerns
user interaction rather than UI construction.



ample, Microsoft Windows provides a built-in con-
trol for IP addresses), interfaces constructed is this
manner share the following important common char-
acteristics.
– A widget is generic, in that it presents data of ba-

sic commonly used types such as strings or num-
bers.

– Complex objects are presented by breaking the
information into pieces simple enough to be han-
dled by generic widgets. An application UI is con-
structed by combining a number of such widgets
inside a window.

– The layout of a window is often defined with the
aid of a GUI builder and stored as a generated
method or as an XML document. Some toolkits
such as Apple Cocoa store layouts as binary data
in a proprietary format.

– Different perspectives of looking at information
space are usually provided by different tools with
different layouts.

An interesting analogy is to compare widgets of an
application framework to symbols of an alphabet,
and application UIs to words over the alphabet com-
posed by developers to express the interaction needs
of their application. This analogy is quite illumi-
nating in pointing out the weak point of this ap-
proach. The “expressive power” of an application,
that is the ability to present information in a vari-
ety of ways ideally suited to the needs of the user,
is limited within this approach to a rather small set
of pre-composed “interaction words.”

For example, the classic Smalltalk-80 environ-
ment [6] included a SystemBrowser for browsing
the source of the entire system, a Class Hierarchy
Browser for browsing the source in the hierarchy of
one class, an Inspector, a Debugger, and a hand-
ful of ancillary tools. Each implements a particular
perspective of viewing the information space, with
navigation relying on opening a new window for
each change of perspective. Any perspective not
included in this scheme, for example viewing all
example methods in the system grouped by class,
would require building a specialized tool.

In more modern environments, embellishments
such as movable view splitters and dockable pan-
els may camouflage the underlying rigidity of such
form-based UIs, and a good tools framework may
ease the burden of creating a new tool. However,
they still suffer from the following inherent prob-
lems of the form metaphor:
– Domain structure replication.
– Information fragmentation.

– Arbitrary display constraints.
– Monolithic tools.
Let us consider these in detail.

2.1. Domain Structure Replication

Complex domains have a hierarchical or directed
graph-like structure. Presenting it in a truly graphi-
cal form typically involves considerable development
effort and places high demand on screen real estate.
In practice, the structure of a complex domain is of-
ten presented using list boxes. With this approach,
a list displays the arcs originating in a graph node,
and the application is programmed to respond to se-
lection in the list by updating the UI to visualize the
arc’s target. Multiple list boxes can be arranged one
after another to descend down multiple levels of a hi-
erarchy, as was first done in the Smalltalk-76 browser
[7]. In its classic form originating in Smalltalk-80 and
repeated in nearly every Smalltalk implementation
since, the browser has four list views side-by-side
across the top of the window. Together they visual-
ize the four levels of arcs leading to the four layers of
code objects in the system: class categories, classes,
method categories (“protocols”) and methods.

This approach is appealing because of is its low
implementation cost, as list box is an easy-to-use
widget readily available in all widget frameworks.
Its implication, however, is that the structure of
the domain is replicated and hard-coded in the
structure of the tool window. Such UI assumptions
place gratuitous constraints on the domain object
model. For example, VisualWorks 5 introduced class
shared variables [8]. Because, like methods, they
belong to classes, the user is required to group them
in categories in order to fit their presentation in
the browser. In practice categorization of variables
turned out to be superfluous, with many classes
having at most one or two of them filed under a
non-descript category named “shareds” or “data”.

Two solutions appeared over the years to relax
this constraint: tree views and columnar lists. Tree
views are used in Windows Explorer and the current
VisualWorks browser. The most popular example of
a columnar list is the column view of OS X Finder.
In the IDE space, the TrailBlazer browser [9] of IBM
Smalltalk uses this device.

These solutions, however, do not come without
their own costs. Tree views have long been known
to present cognitive difficulties for nonprogrammer
users [10]. While programmers often consider them

2



natural [11], studies have shown that tree view user
efficiency drops as the hierarchy deepens, falling be-
hind the ”drill-down” navigation style after 3 hierar-
chy levels [12]. Columnar list, while free from these
deficiencies, complicates application logic with het-
erogeneous list management. If a hierarchy level pre-
sented by a list includes arcs leading to objects of
different nature (for example, the VisualWorks Sys-
temBrowser lists classes and namespaces together),
application logic needs to account for all of these pos-
sibilities as it responds to user selections in the list.
Depending on the nature of the object selected, dif-
ferent responses are appropriate. This problem can
be held under control with proper object-oriented
design, but the very need to control it illustrates
the implementation and maintenance overhead in-
troduced by heterogeneous lists.

2.2. Information Fragmentation

Directly related to domain structure replication
is the problem of fragmented information. A tool
such as the Smalltalk browser designed to present
information in a highly structured form easily in-
duces “tunnel vision”, so that logically related enti-
ties such as closely related methods cannot be seen
simultaneously. Thus, information structure repli-
cated by the tool, while perfectly logical, gets in the
way of user productivity.

A related problem is modality. An attempt to edit
a method places the Smalltalk browser in editing
mode, with navigation disabled in order to keep the
browser focused on the method. This compounds
the problem of fragmentation, making it impossible
while editing a method to glance at a related one
without using a separate browser. Such modality is
encouraged by the apparent logic of keeping the tool
“focused” on the change in progress. Modeless solu-
tions, such as the author’s DontModeMeIn add-on
to the VisualWorks browser [13], are possible but
require additional implementation effort. Thus, UIs
presenting a hierarchical domain through reusable
widgets in a form-like arrangement appear to en-
courage modes by their very nature.

This tunnel vision and modality are likely to be
among the real reasons, besides the obvious iner-
tia, why many users prefer plain source file view
to structured editors that are literally based on the
Smalltalk browser model.

2.3. Arbitrary Display Constraints

The smallest box of a form is sometimes the one
in which the most information need be provided. As
an electronic embodiment of the same idea, UI forms
do not escape this paradox. In the author’s image,
the class category list of the Squeak browser open at
its default size includes 476 items, only 14 of which
(2.9%) are visible at a time. Expanding the window
to full screen makes the bottom text view occupy
half the screen to show a method that’s typically
only a few lines long. Even for large methods (rela-
tively rare in Smalltalk), the proportions of this ex-
tremely wide but not very tall text view are exactly
the opposite of the optimal.

The cause of this problem is simple. The primary
factor that determines the ideal size of a widget is
the content it displays at any given moment. The
primary factors that dictate the actual size of a wid-
get in a form are the size of the window and its
overall layout including the sizes of other widgets it
contains. Clearly, the two are not at all related. The
ideal size is dictated from the inside out, the actual—
from the outside in. At best, the UI designer can as-
sume that a given widget typically needs more room
than another and allocate the space accordingly.

Again, various mechanisms appeared over the
years to mitigate the problem. Common examples
are movable view splitters, tabs and and collapsible
and expandable dockable panels. They still do not
address the cause of the problem—the fact that
window layout is determined and fixed in advance
without regard to the display needs of the actual
content.

2.4. Monolithic Tools

Easier reuse is an important promise of object-
oriented programming. UI logic often makes up the
bulk of an application, and ease of UI reuse is an
attractive proposition. After model-view-controller
and its refinement as pluggable views in Object-
Works 4, perhaps the most important step along
this path was the model-view-presenter pattern first
created by Taligent [14] and reintroduced into the
Smalltalk world by Dolphin Smalltalk [15].

That architecture indeed makes it easier to reuse
the logic behind the UI. However, the layout of the
UI is harder to reuse as a whole for many of the
same reasons as discussed above. While it is easy
from the programmatic point of view to incorporate

3



a portion of the UI serviced by an application inside
another, at the interface design level such embedding
often doesn’t work well. The available space may be
too small, or the embedded application may require
menu bar items that should now be massaged into
the menu bar of the host application, or the visual
style of the embedded application may conflict with
the guidelines of the host.

3. The Hopscotch Approach

The motivation for trying a different approach
in the application framework and the IDE for
Newspeak was two-fold. Obviously, we wanted a
framework that would make platform users more
productive. More immediately, there was a practical
need for a Newspeak-aware browser. The Newspeak
language introduces nested classes, and the classic
Smalltalk browser with its expectations of a four-
level hierarchy cannot be successfully adapted to
Newspeak.

3.1. Goals, Some Influences and Parallels

To summarize our goal as an antithesis to the
problems just discussed, we were seeking an interac-
tion model and a framework architecture to allow:
– Easy navigation in a complex information space.
– Ability to integrate diverse tools into a seamless

user experience.
– Integrated and modeless presentation of informa-

tion.
– Easy creation of new tools by composing them

fully or partially from already existing tools.
Tools and interaction models that support the first
two goals have long existed—they are web browsers.
It is important to realize what it is in particular that
makes a web browser successful as the vehicle of the
world wide web.

A browser is a reusable tool that can be an en-
cyclopedia one minute and a mail client the next
precisely because it is not a tool at all. It is a tool
holder that takes care of switching the tools it con-
tains on demand following a simple and predictable
navigation model.

Not less importantly, the tools, or pages, can be so
diverse because they typically follow the metaphor
of document rather than form. Unlike a form that
effectively is the window that displays it, a document
is contained inside a window but as a rule is not fully
constrained by it. Given that the form metaphor is

at the root of problems ranging from suboptimal
screen real estate allocation to obstacles to interface
reuse and composition, the document metaphor is
an attractive alternative.

Reassuringly, the document metaphor has already
once been used for structured code presentation in
the browser of Strongtalk [16]. Despite its lack of
consistent navigation model, the tendency to open
too many windows and lack of simple tool composi-
tion capabilities, the Strongtalk browser shows that
the document metaphor is indeed a context where
the problems of information fragmentation and gra-
tuitous modes can be solved.

It is important to emphasize that the web browser
and the document metaphor were chosen as an ex-
ample of an attractive interaction model, but not as
the technological foundation. Ultimately, the goal
was to build a Newspeak-native framework that
would include as its core players composable inter-
active tool objects whose navigation scheme would
resemble the universally familiar web browser 2 .

As will be seen in the architecture overview sec-
tion, the objects that implement individual Hop-
scotch tools are called presenters. The architecture
is indeed an extension of the MVP idea.

3.2. Interaction Model

Because of space constraints only one illustration
is provided in this section. The tools and interaction
will be demonstrated as part of the workshop presen-
tation.

To the user, a Hopscotch window 3 looks very
much like that of a web browser. There is a pair of
buttons with back and forward arrows in the top
left corner, a history button, a home button and
a few others. An interaction session begins at the
home page. In the current Hopscotch incarnation,
the home page includes a number of predefined nav-
igational links, the two most important of them to
“System Source” and “Source Control”.

Like in a web browser, clicking hyperlinks is the
primary means of navigation. Auxiliary navigation
mechanisms are the forward/back buttons and the

2 The Hopscotch design would, in fact, allow running it in
a web browser. This at the moment is an unused feature of
the design and not a goal in itself.
3 Because they were created simultaneously, “Hopscotch”
refers to both the application framework and the Newspeak
IDE built using it. The intended meaning is usually clear
from the context.

4



Fig. 1. Hopscotch view of a Newspeak class.

history page that lists all places visited in the same
browser.

A class is presented as a header summarizing
important class information such as the name, the
containing category and package (both are links
that can be clicked to go “out” into the enclosing
context), and the comment. The header is followed
by the view of nested classes and methods. Each
method is an interactive element that switches be-
tween a collapsed state showing only the method
name and an expanded state displaying full method
source. Initially all methods are collapsed. Above
the lists are buttons that allow expanding or col-
lapsing all elements at once. Expanding all methods
turns the view into a flat source view similar to
that of a flat file editor (but aware of the displayed
structure).

In a similar manner, class categories are presented
as lists of class names with additional class statis-
tics such as the number of methods. Each name is
a link leading to the full class presentation. A class
can also be expanded in-place into its full presen-
tation. In that embedded presentation methods can
also be expanded as described above, which makes
it possible, if desired, to produce a flat view of full

source of all classes of the entire class category.
Typing inside a method view marks the view as

containing unsaved changes, with a bright orange
bar showing “accept” and “cancel” buttons and
making unsaved changes easy to spot. Editing a
method is not a mode. It is possible at any moment
to navigate away to look at another class or senders
or implementors of a message and then use the
“back” button or the history page to come back and
continue editing. It is also possible to edit multiple
methods at once, be they in the same class or in
different ones.

Importantly, Hopscotch provides no menu bar
with actions that would operate on methods, classes
or any other objects it presents. A method presen-
tation itself includes elements for interacting with
the method. There is a menu of cross-references (as-
sociated with the “speech bubble” icon in method
and class headings), allowing to see all senders and
implementors of the messages sent or implemented
by the method. There is also a menu of actions (as-
sociated with the “down triangle” icon) supporting
various manipulations such as deleting the method.
Each method (or any other object supporting ac-
tions) has its own action menu button. The menu
operates on the object whose presentation contains
the menu.

In contrast to the common model of a menu
bar providing all possible actions, this approach
makes it intuitively obvious in accordance with the
Gestalt principle which object an action affects. It
also avoids another vestige of modes in traditional
UIs: menu items mysteriously disabled because
they are not applicable to the currently selected
object. (Which illustrates that in traditional UIs
the concept of current selection or other UI state
often introduce modes). In the Hopscotch model,
the action menu of each object only includes the
actions the object supports.

In fact, with the adoption of the document
metaphor and the dismissal of the menu bar, the
concept of selection at the level higher than text
editing becomes less prominent and the UI less
stateful. A class view, for example, has no currently
selected element of any kind. It is simply a collec-
tion of visual artifacts mapped onto the collection
of program objects they represent. Operating on
a visual artifact operates on the program object—
direct manipulation at its purest.

The information space available for navigation in
Hopscotch is not limited to classes. The Source Con-
trol tool is implemented as part of the same frame-

5



work, appearing as a page listing Monticello [17]
packages categorized by their status (modified, up-
dated on the server, etc) and expandable to reveal
details such as recent version history.

The framework also includes an inspector. In fact,
the class browser and the inspector are intertwined.
The action menu of a class includes an “Inspect
Class” action that navigates to the inspector on the
class object, and each inspector includes a link nav-
igating to a browser on the class of the inspected
object, all within the same Hopscotch window. This
shows seamless navigational integration of what
were considered to be distinct tools. Integration can
be even more direct. In an inspector, each slot of an
object can be expanded in place into a full inspector
on the value of the slot. In a similar fashion, a class
nested inside another can be expanded in place in
the Newspeak class browser view as shown in the
screenshot on the previous page. Getting a little
ahead of the presentation, it is also entirely possible
to embed a browser into an inspector view, or an
inspector into a browser with a trivial one-line code
change.

3.3. Architecture Overview

Hopscotch may appear similar to a web applica-
tion. This resemblance is natural considering the
deliberate choice of a web browser-like navigation
model, however it is also skin-deep. Hopscotch is
not an HTML renderer implemented in Newspeak,
it is an application framework supporting a wide
array of interaction models other than the favored
hypertext-like one.

Hopscotch tools (“pages”) are displayed inside an
outer navigator window. The navigator window is a
generic document holder. The navigator is usually
unaware of the purpose and function of the tools
it contains, however for a particular application it
can be customized with domain-specific tools. For
example, the window used for browsing Newspeak
and Smalltalk code has a Search box in the tool bar
to search for packages, classes and methods.

The basic unit of the framework is a presenter. A
presenter is responsible for displaying and manipu-
lating a domain object in a particular way. A presen-
ter may contain other presenters (child presenters),
and may or may not be contained inside a higher-
level presenter (parent presenter). A navigator win-
dow is considered to be the parent of the topmost
(“page-level”) presenter.

A presenter creates and controls widgets such as
text labels, editors, buttons, hyperlinks, or graphi-
cal images required to present its model. The wid-
get system used by Hopscotch is Brazil, a cross-
platform native widget framework developed for and
in Newspeak. As of this writing, Brazil works with
the Morphic and native Windows APIs. Future sup-
port is planned for some Unix-based UI systems.

Unlike the traditional MVP architecture, a Hop-
scotch presenter does not interact directly with
model objects. Instead, it does that through a sub-
ject. A subject plays several roles in the framework.

First of all, it is a location marker identifying the
domain object being presented. Continuing the web
browser analogy, we could say that by representing a
“place” in the information space, a subject is similar
to a URL. Indeed, subjects are used by the frame-
work as addresses: when the user clicks a link or
initiates navigation in some other way, the request
the navigator receives holds an instance of the sub-
ject identifying the destination. The subject is then
used by the navigator to manufacture the appropri-
ate presenter.

Besides identifying the location, a subject can also
identify the viewpoint used. For example, a Class-
Subject represents the full view of a class with its
methods and other details. In contrast, a ClassIn-
heritanceSubject represents a view of a class as part
of the hierarchy that includes its superclasses and
subclasses. Together, the location and the viewpoint
determine “the subject of the presentation,” hence
the term.

Indirection achieved by using subjects rather than
presenters as navigation targets is important in sep-
arating the specification of navigation from a partic-
ular policy of displaying domain objects. In differ-
ent usage contexts with different display constraints,
different presenters could be used for a particular
subject. For example, a ClassSubject can have two
presenters, one of them optimized for smaller screens
to include less information. At the same time, tools
can request navigation by specifying only the target
subject without regard to how the subject would be
presented in the current system context.

The subject can also play the role of a convenient
stand-in for a domain object in situations when there
isn’t one in the domain. For example, in the tradi-
tional Smalltalk design there is no object that cor-
responds to a particular class category. Instead, cat-
egory members are retrieved from a singleton cate-
gorizer object using a key. In this situation, a Class-
CategorySubject would encapsulate that key and

6



maintain the illusion of a real domain object for the
rest of the Hopscotch framework.

The final role a subject can play is to serve as a
utility kit providing methods that help presenters
extract and process domain data.

A presenter defines the particular presentation of
its subject. It does that, however, not by directly
instantiating and configuring visuals (widgets), but
in abstract form as a definition method composed
of combinators. Because of limited space, we will
consider only one simple example of a presenter for
a subject that represents a “dual” view of a class,
both as a class metaobject and as a class browser.
The following definition will present it as a heading
with the name of the class followed by an inspector
and a browser 4 :

definition = (
ˆcolumn: {

majorHeading: (label: subject model name).
include: (Inspector on: subject model).
include: (Browser on: subject model).

}
)

The label: message takes care of creating a label
with the specified text. The majorHeading: mes-
sage then wraps it with additional components to
format it to prominently stand out (more on that
later). The column: combinator finally arranges the
header and the presentations of the two subjects,
one representing a view of the subject’s model (the
class metaobject) as a plain object (displaying slots
and their values), the other—as a class (displaying
methods and other class details). Inspector and
Browser, in Newspeak semantics, are also message
sends to the receiver—they are not the Inspector
and Browser classes defined in Smalltalk. We as-
sume that arrangements have been made in the mod-
ule containing this definition to bind these names to
the appropriate subject classes.

Such indirect specification of the interface—in
what is essentially a domain-specific language—by
sending messages to the (implicit) receiver leaves
significant freedom in its interpretation. For ex-
ample, the specific visual appearance of the major
heading in the above definition is left up to the

4 The Hopscotch combinator language is far from being final.
This listing only serves to illustrate the general idea, while
the particular combinators and their names are subject to
change.

receiver to define. The language mechanisms of
Newspeak provide many interesting possibilities.

The receiver may receive a definition of the
majorHeading: method from a mixin together with
other similar “formatting combinators”. Thus, mix-
ins can play the role of style sheets imported into
presenter classes to define their appearance.

Alternatively, majorHeading: may be a method
defined by an outer class, such as the module. In this
case the message send in the presenter definition is
a Newspeak outer message send. With this scheme,
a module can centrally control the appearance of all
presenters it contains.

As yet another possibility, the handling of
majorHeading: may be implemented so that the
receiver walks up the chain of its parents search-
ing for a handler. With this “dynamic” policy, a
presenter handling this message would impose a
particular formatting style on all of its children.
In our review of obstacles to interface composition
within the traditional UI approach, we mentioned
as one such obstacle the fact that the appearance of
a child is hard-wired in its UI and may clash with
that of the parent. In contrast, this example shows
how in our architecture we are able to late-bind the
determination of the particulars of a child layout,
enabling the parent to impose a common visual
style on its children.

To show some of the additional capabilities of our
scheme, here is how we can change the definition
above to make the browser view initially hidden and
expandable upon request.

definition = (
ˆcolumn: {

majorHeading: (label: subject model name).
include: (Inspector on: subject model).
heading: (label: ’Browser’) details:

[include: (Browser on: subject model)].
}

)

This definition can be further refactored for read-
ability, capitalizing on the fact that it is written in
plain Newspeak and not in any specialized markup
language.

definition = (
ˆcolumn: {

majorHeading: (label: subject model name).
expandable: Browser named: ’Browser’.
expandable: Inspector named: ’Inspector’.

}

7



)

expandable: subjectClass named: title = (
ˆheading: (label: title)
details: [subjectClass on: subject model]

)

By now, the approach may begin to resemble text
typesetting in TEX. This resemblance is more than
a mere coincidence.

The tree structure of presenters and their con-
tainers is very important in establishing the context
for any nested tool. There is a facility for observer
pattern-like “indirect sends” over this tree. For ex-
ample, this facility enables a presenter to request its
containers to scroll or expand to ensure that the re-
questor is visible.

Another important use of this facility is the
mechanism behind hyperlink navigation. A pre-
senter with responds to a link click by sending a
navigation request up the presenter hierarchy as an
indirect send. Thus, interpretation of a hyperlink
response lies within a particular presenter and is
not hard-wired into the framework.

The presenters we have considered so far have the
form of a document composed vertically from the
top down—essentially, a column. This is so because
the resulting document-like shape of presenters eas-
ily lends itself to composition, and has so far been
enough to serve our needs. The framework itself does
not require a presenter to have any particular shape.
A presenter can be defined in the shape of a dia-
gram, or a document with an attached outline-style
view for easy scrolling, or even one that looks like
the classic Smalltalk browser.

To summarize, the particular Hopscotch variation
of MVP could be expressed as mSP(v). The subject
and the presenter are much more important players,
as far as programmer effort is concerned, than the
others. The model is at least partially shielded from
application code by the subject. The views (widgets)
are also somewhat decoupled from application code
by the combinator language used to write presenter
definitions and play a less important role than they
do in traditional MVP.

4. Conclusions: UI Composition Instead of
UI Building

As already mentioned, Hopscotch-the-IDE was
the immediate motivation for creating Hopscotch-
the-framework. Work on both began in early Au-

gust 2007. By mid-September 2007 the IDE had
enough features for the author to abandon the tra-
ditional browser and use Hopscotch for all further
development work. By the end of 2007 Hopscotch
was used by the entire Newspeak team and included
browsers for Smalltalk and Newspeak classes, pack-
age and category presenters, a search facility, a
selector senders/implementors presenter, a message
inheritance presenter, an inspector, a Brazil visual
hierarchy explorer, and a prototype debugger.

This progress in such a short time, in parallel with
active framework development that so far included
two complete redesigns, demonstrates the high pro-
ductivity of compositional UI construction approach
as compared to the traditional one. In this section
we will review the problems of the traditional ap-
proach and how Hopscotch avoids them.

Domain structure replication. Hopscotch presen-
ters do not have rigid structure created in a GUI
builder or otherwise, with a fixed number of widgets
constrained to fit a rectangle of a particular size. In-
stead of making assumptions about the structure of
domain objects, a Hopscotch presenter can adapt to
whatever structure the model has at the moment.

Information fragmentation. Because presenters
are easily composable, it is easy to define new views
to bring together information that previously was
not available in one place. The approach also makes
it easy to link related views for quick navigation.

Arbitrary display constraints. The document-like
style of presenters and their composition ensures
that presenter UI is not constrained by the window.
Thus, a presenter can indeed size itself “from the in-
side out” to best accommodate its current content.

Monolithic tools. Within the Hopscotch approach,
the only way to create an interface is to create a pre-
senter. A presenter is guaranteed to be composable
with others by virtue of being a presenter. Creat-
ing a presenter in Hopscotch feels less like building
a tool and more like defining a picture of an object,
expecting that it can later be part of a larger picture
still.

Last but not least, presenters are defined and com-
posed within a powerful general-purpose language.
Even the simple example above is enough to show
how Newspeak, thanks largely to its late-bound mes-
sage send semantics and lack of the boilerplate of
explicit self sends, can be a flexible and controllable
user interface definition language obviating the need
to work with specialized structural markup and style
sheet languages at the framework user level.

8



5. Future Work

Our experience with this model so far has been
enough to appreciate both the attractiveness and the
vast scope of the subject of interface composition.
Two areas in particular appear to be very interesting
to explore in future framework development.

One is describing and composing the semantics of
nested presenters. We briefly mentioned the signifi-
cance of the presenter nesting hierarchy and the ex-
isting “indirect send” facility. More experience pro-
gramming in this environment may point out com-
mon patterns that can be captured in a composition
mechanism that would make interface composition
even easier.

The other is a facility to automatically manage
changes in the structure of domain objects, making
presenter definitions fully declarative. At the mo-
ment, a presenter definition is used as an initial ex-
ecutable specification evaluated at the time a pre-
senter is created. Some presenters display objects
whose structure may change (for example, methods
may be added to a class), requiring changes in the
structure of nested presenters. At the moment such
presenters explicitly mutate their structure to match
the new state. Thus, their structure is effectively
specified twice, once in the definition, then again
in the mutation logic. Such duplication is inelegant
and invites problems, especially in its highly imper-
ative mutating part. Re-evaluating the definition in
a new context and automatically “massaging” exist-
ing presenters and views into the new shape is a more
attractive proposition. It is complicated by the fact
that the UI is inherently stateful, and useful state
such as unsaved edits and the collapsed/expanded
state of items needs to be preserved. However, we
believe that it is a solvable problem, and solving it
will further simplify the use of the framework.

On the application side of Hopscotch-the-IDE,
the new freedom of composing tools and combining
information opens many interesting opportunities.
They are too early to speculate about before proto-
typing and testing.

As for a GUI builder—it is considered harmful.

6. Acknowledgments

The author would like to thank Peter Ahé, Gilad
Bracha and Eliot Miranda for their interest, sup-
port and encouragement since the early days of the
framework development.

References

[1] Gilad Bracha, The Newspeak Programming Language,
talk at HPI Potsdam, 2008. Available at http://www.

tele-task.de/page50 lecture3490.html

[2] Dan Ingalls et al, Back to the future: the story of Squeak,
a practical Smalltalk written in itself, ACM SIGPLAN
Notices, Volume 32, Issue 10, 1997.

[3] A Goldberg and D Robson, Smalltalk-80: The Language
and its Implementation, Addison-Wesley, 1983.

[4] David Ungar, Randall B Smith, Self: The power of
simplicity, Conference on Object Oriented Programming
Systems Languages and Applications, 1987.

[5] Ole Lehrmann Madsen, Birger Mller-Pedersen, Kristen
Nygaard, Object-Oriented Programming in the BETA
Programming Language, Addison-Wesley, 1993.

[6] A Goldberg, Smalltalk-80: The Interactive Programming
Environment, Addison-Wesley, 1983.

[7] Larry Tesler, The Smalltalk Environment, BYTE
magazine, August 1981.

[8] VisualWorks Application Developer’s Guide, p. 81,
Cincom Systems, 2002.

[9] IBM Smalltalk User’s Guide, ch. 12, IBM Corp., 2002.
The TrailBlazer browser is created by Chris Gerken.

[10] Alan Cooper, Robert M Reimann About Face 2.0: The
Essentials of Interaction Design, Wiley, 2003.

[11] Jiri Kopsa, Jakub Franc, Usability Study Report:
NetBeans Enterprise Pack 5.5, ui.netbeans.org, 2006.

[12] Panayiotis Zaphiris, Ben Schneiderman, Kent L
Norman, Expandable Indexes Versus Sequential Menus
for Searching Hierarchies on the World Wide Web,
International Journal of Human Computer Studies,
2002.

[13] Vassili Bykov, Don’t Mode Me In, blog article,
2007. Available at http://www.cincomsmalltalk.com/

userblogs/vbykov/blogView?entry=3347470901

[14] Mike Potel, MVP: Model-View-Presenter, The Taligent
Programming Model for C++ and Java, 1996. Available
at http://www.wildcrest.com/Potel/Portfolio/mvp.

pdf

[15] Andy Bower and Blair McGlashan, Twisting the Triad,
The evolution of the Dolphin Smalltalk MVP application
framework, ESUG tutorial, 2000.

[16] Gilad Bracha, David Griswold, Strongtalk: Typechecking
Smalltalk in a Production Environment, Proceedings
of the OOPSLA’93 Conference on Object-oriented
Programming Systems, Languages and Applications,
1993.

[17] Avi Bryant, Colin Putney, Monticello User Manual.
Web publication. Available at http://wiresong.ca/

Monticello/UserManual

9

http://wiresong.ca/Monticello/UserManual
http://www.tele-task.de/page50_lecture3490.html
http://www.tele-task.de/page50_lecture3490.html
http://www.cincomsmalltalk.com/userblogs/vbykov/blogView?entry=3347470901
http://www.cincomsmalltalk.com/userblogs/vbykov/blogView?entry=3347470901
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://wiresong.ca/Monticello/UserManual

	Introduction
	Traditional Interface Construction
	Domain Structure Replication
	Information Fragmentation
	Arbitrary Display Constraints
	Monolithic Tools

	The Hopscotch Approach
	Goals, Some Influences and Parallels
	Interaction Model
	Architecture Overview

	Conclusions: UI Composition Instead of UI Building
	Future Work
	Acknowledgments
	References

